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1. Introduction 

   During the past twenty years, various multidimensional scaling (MDS) techniques 

which deal directly or indirectly with the asymmetric relationships among objects have 

been developed by many researchers. 

   The motivation of developing these asymmetric MDS's is, of course, to overcome a 

short-fall inherent in the traditional MDS techniques. That is, the traditional MDS's are 

not so powerful in cases when the similarity or dissimilarity data matrices are asymmetric 

by nature because they are based on the assumption that the similarity or dissimilarity data 

can be related to the interpoint distances in some metric space (Torgerson, 1958 ; Kruskal, 

1964 ; Guttman, 1968). 

   For this reason, some researchers have augmented the traditional MDS's by the 

assumption that the similarity or dissimilarity between objects is a function not only of 

interpoint distance in a metric space but also of the quantities related to the objects. For 

example, the squared distance is augmented by differential weights for dimensions in the 

weighted Euclidean model proposed first by Young (Young, 1975, 1987; Baker, Young, and 

Takane, 1977; Hayashi, 1977). In Krumhansl's distance-density model, the interpoint 

distance is augmented by some measure of spatial density in the regions surrounding the 

points (Krumhansl, 1978). Weeks and Bentler (1980, 1982) and Saito (1983, 1986) have 

proposed modified distance models in which the interpoint distance is augmented by a few 
constants related to the points. Okada and Imaizumi (1984, 1987) have proposed a non

metric version of a generalized modified distance model. 

   Some other researchers have taken different approaches which utilize metric spaces. 

For example, SSA-2 (Smallest Space Analysis 2) by Guttman (1968) and Lingoes (1973)



imposes row compatibility and column compatibility on data and yields two solutions in a 

metric space. Tobler's wind model explains asymmetries by the direction of wind as

signed to mesh points on the configuration of objects (Tobler, 1976-77). Sato's model 

represents asymmetries using Randers' metric which is an asymmetric metric function 

(Sato, 1988, 1989). 
   Somewhat different or completely different approaches have been taken by some 

researchers. The future matching model proposed by Tversky (1977) represents the 

similarity or dissimilarity between two objects by a linear combination of the measures of 

the common and distinctive features of the two objects. 

   Chino (1978, 1980) has proposed a model involving a geometric generalization of scalar 

products. This model fits the scalar (inner) product and the magnitude of the cross product 
of solution vectors to the symmetric and skew-symmetric parts of the data, respectively. 

However, the model was defined only for two or three dimensions, first. 

   Canonical analysis of asymmetry proposed by Constantine and Gower (Gower, 1977, 

Constantine and Gower, 1978) decomposes dissimilarity data matrix into two parts, the 

symmetric and skew-symmetric parts, and then analyzes them separately. While the 

symmetric part is analyzed by some established distance model, the skew-symmetric part 

is analyzed by its canonical decomposition. Asymmetric relationships are interpreted in 

terms of areas of triangles and colinearities. Therefore, the canonical analysis has a 

stroung resemblance to the model proposed by Chino. 

   DEDICOM proposed by Harshman (1978, 1982) can be said to be a more general inner 

product model than the model proposed by Chino. DEDICOM decomposes observed 
similarity data into some combination of few basic underlying relationships. 

   Of concern here is the model formulated by Chino (1978). This model is written as : 

                       Sjk axj'xk+ bxj'I*xk+c+Ejk, (1) 

where the quantity Sjk is the observed similarity between objects Oj and Ok (similarity 

from O j to O k to be precise), while the matrix I * is a special skew-symmetric matrix of 

form

I*= 0 1, 1 *= 0 1 -1 , 

  (-1 1) -1 0 1 
                          1 -1 0

(2)

for two and three dimensions, respectively. Quantities, a, b, and c are unknown con

stants. 

   The quantity, xj' I*Xk in the second right-hand term of Eq. (1) has a special meaning. 

In the two-dimensional case, it becomes 

                               Xj'I*Xk-xjlxk2-xj2xkl, (3) 

which is just the cross product of two vectors xj and Xk, the absolute value of which 

represents the area of the parallelogram spanned by the two vectors. It should be noted 

that the cross product in a two-dimensional space is a scalar. 

   The sign of the term Xj'I*Xk determines the orientation of the parallelogram. This 

orientation can be easily guessed by defining the positive direction in the one-two plane in



the following way : let us choose the horizontal and vertical axes, respectively , as the first 

and second axes, and suppose that the sign of b in Eq. (1) is positive. Then we say that the 

positive direction in this plane is counterclockwise. If the sign of b is negative, we then say 
that the positive direction is clockwise. The orientation of the parallelogram is positive if 

the sense (counterclockwise or clockwise) in which the vertices formed by the tails of the 

two vectors follow each other is the same as that for the positive direction in the plane. 

The orientation is negative if this sense is different from that for the positive direction. 

The positive direction therefore indicates the orientation of asymmetry in the plane. 

   In the three-dimensional case, the quantity becomes 

          Xj'I*Xk=(xj2xk3-xj3xk2)+(xj3xkl-xjlxk3)+(xjlxk2-Xi2xkl ). (4) 

In this case, the cross product or vector product of two vectors xj and Xk is a vector and 

its first, second, and third components are, respectively, the first, second, and third right

hand terms of Eq. (4) in a right-handed coordinate system. It is evident, from the forms 

of these terms in Eq. (4), that the absolute values of these terms represent areas of 

parallelograms in two-dimensional spaces. In fact, the first, second, and third terms 
correspond, respectively, to parallelograms projected onto the x2-x3, x3-x1, x1-x2 planes 

of the parallelogram spanned in space by the vectors xj,xk. Fig. 1 .1 illustrates this. This 

means that the geometrical interpretation of the quantity in three dimensions can be 

reducible to that of the quantity in two dimensions. 

   As suggested in Eq. (4), the positive directions in these planes are all counterclockwise 

if we choose the horizontal and vertical axes, respectively, as the second and third, the third 

and first, and the first and second axes when the sign of b is positive. If we exchange the 

horizontal and vertical axes of, say, the third-first plane, the positive direction must also 

be changed. As we did in the two-dimensional case, if the sign of b in Eq. (1) is negative, 

all the positive directions in those planes should be altered accordingly. 

   One short-coming of this model is that it was defined only for two or three dimensions. 

Chino (1979, 1980) has extended this model into higher dimensions. However, no discussion 

has been made concerning theoretical and practical implications of the extension. The 

current paper is devoted to this purpose. 

   In the next section, we shall introduce the extended model and discuss the theoretical 

implications of this model. We shall call the extended model GIPSCAL (a Generalized 

Inner Product multidimensional SCALing). In higher dimensions we can define neither the 

cross product nor the vector product. However, it will be shown that we can still define 

areas of parallelograms in higher dimensions and associate with the two vectors xj, Xk an 

area of a parallelogram, the square of which is a well-known quantity in numerical 

analysis. 

   In the third section, we shall refer to a psychological justification of the model. In the 

fourth section, we shall discuss the problem of double centering transformation. In the 

classical MDS by Torgerson (1958), this transformation plays a fundamental role prior to 

the factoring of an inner product matrix. The double centering transformation of the 

observed similarity matrix is contrasted with that of the squared distance matrix in the 

classical MDS. In the fifth section, we shall show some examples of application. In the 

discussion section, we shall show the necessity for developing a general maximum likeli



hood MDS which enables us to select the best model out of a variety of extant asymmetric 

MDS's.

Fig. 1.1 Parallelograms projected onto three planes of the parallelogram spanned in space by 
        the vectors xj, xk.

2. The model 

   Let the data be for N objects, say 01 , 02, ..., ON, which may be physical stimuli, 
classmates, companies, or nations and so forth. We shall denote the observed similarity 

from Oj to Ok by Sjk, assuming that the similarity is defined at the interval level of 

measurement in Stevens' terminology. In this sense, our model is a metric multidimen

sional scaling. The GIPSCAL model is written as : 

                    Sjk=a xj' Xk+b xj' Ip* xk+c+Ejk, (5) 

where a, b, and c are unknown constants, and Ejk is an error term, while vectors xj , Xk 
are coordinates of objects in a p-dimensional Euclidean space, which are estimated from 

similarity data, Sjk's. The matrix, Ip* is a special skew-symmetric matrix of form ,



Ip*_(Sgnl1.lm.p)~' (6)

where 

                sgn 1 2 ..... P)= 0, if the two indices 1, m are the same, 
                        \ l m ..                                      1, if (..l m..) is an even permutation of (1 2...p ), 

                                  -1 , if (..l m..) is an odd permutation of (1 2...p). 

Of course, in the special case when p is less than four, I2* and I3* coincide with the 

corresponding matrices I* of Chino's ASYMSCAL in two and three dimensions, respective

ly. 

   In this way, GIPSCAL is thought of as a natural extension of Chino's ASYMSCAL into 

higher dimensions, at least formally. However, at this point some questions may arise : is 

it possible in higher dimensions to consider the quantity x;' Ip* Xk as the sum of the 

parallelograms projected onto two-dimensional planes? Can we associate with the two 
vectors x;, Xk a third vector uniquely ? For, only in three dimensions can we define a 

vector product x; x Xk that again is a vector. 

   The answer to the first question is yes. Quantity, x3' Ip* xk in the extended model has 

a very desirable property that, on the l-m plane,

x;' Ip* xk = E sgn 1 2 .... P x;l xkm,           l*m ( .. l m..
(7)

becomes sgn 1 2 .... P (x;, xkm-x ,im xkl). 

                                \.. l m..l 

This means that the geometrical interpretation of the quantity in higher dimensions is 

reducible to that of the area of the parallelogram spanned by vectors x; and xk in two 

dimensions. Fig. 1. 1 is a special case when p = 3. In the case when the sign of b in Eq. 

(1) is positive, the positive direction in the l-m plane becomes counterclockwise if we 
choose the horizontal and vertical axes, respectively, as the l-th and m-th axes and if the 

permutation (..I m..) is even. 
   The answer to the second question is no. As discussed in the previous section, in 

higher dimensions we cannot associate with the two vectors x;, Xk a third vector outside 

the plane spanned by the two vectors in a geometrical fashion. However, we can still 

associate with the two vectors the area of a parallelogram spanned by these vectors. 

   It is interesting to note that the square of the area is the Gramian or Gram determi

nant of the two vectors, which is well-known in numerical analysis and matrix algebra 

(Courant and John, 1974 ; Lancaster and Tismenetsky, 1985). 
   The Gramian g (x;, xk) is written as

g (x;, xk)=(x;' x;) (Xk' xk)-(x;' Xk) (Xk' x;) 
               x;' x;, x;' Xk 

              xk x;, xk xk

(8)

It can also be shown readily that the following relation holds between the Gramian of



the two vectors xj, xk and the right-hand term of Eq. (7) :

p 

g (x', xk) 21 (xjl xkm xjm xkl)2, (9) 
                     1,m=1 

                  1<m

Moreover, it is interesting to note that in general 

                          g (xj, xk)?0, (10) 

and that equality holds only if xj and xk are linearly dependent. 

   In any case, we can say that GIPSCAL fits the scalar product (inner product) and the 

area of the parallelogram spanned by two vectors to the symmetric and asymmetric part 

of observed similarity judgements, respectively.

Fig. 3.1 Perceived image xk of member Ok by member O;

3. Psychological justification of the model 

   One may think that the availability of GIPSCAL is only in the parsimonious geometri

cal representation of the structure in the data. However, GIPSCAL has another availabil

ity in that it provides a psychological justification of why asymmetry arises . 
   For convenience, let us rewrite Eq. (5) as 

                           Sjk-xj' xk+c+Ejk, (11) 

or 

                           Sjkr=xj'Xk+ c+Ejkr, (12) 

where 

                       xk-(al+bIp*) xk=A xk, (13) 

Here Sjkr denotes the similarity from 0j to Ok rated by judge Jr . 
   Both Eq. (11) and Eq. (12) tell us that perception of Ok by Oj is distorted such that



                              xk=A xk, (14) 

where vector Xk is the perceived image of Ok, while xk is the preimage of Ok. Figs. 3.1 

and 3. 2 illustrate this. In this sense, the derived configuration by GIPSCAL is said to be 

a preimage configuration. In the field of person perception in social psychology, several 

general judgmental effects such as the halo effect and logical error have been known 

(Tagiuri, 1969). These effects may be combined to give rise to the perceived images 
discussed above. 

   It is of interest to note that the magnitude of the preimage of each object is related to 

the similarity to itself because, from Eq. (5) 

                      S;.,=ax;'x;+c+E;; (15)

Fig. 3.2 Perceived image x; of member O; by member Ok

4. Double centering transformation as a preprocessing of original data 

   Coordinates of the derived configuration by MDS techniques are arbitrary in the sense 
of being only defined up to a central dilation, a translation (origin shift), and a rotation. By 

contrast, coordinates obtained by GIPSCAL are not arbitrary for the origin shift. 
However, we can have a configuration whose centroid is the origin in the special case when 

the double centering transformation is permitted to an original full similarity data matrix 

(we shall call such a configuration origin centroid configuration). By the full similarity 
data matrix we mean the similarity data matrix S which has no missing observations. To 
show this, let us first rewrite Eq. (5) in matrix form as 

                   S=aXX'+bXIp* X'+c JN+E. (16) 

where S is an N by N similarity data matrix, X is the preimage configuration, JN is an 

N by N matrix whose entities are all 1, and E is an N by N matrix of error terms. 
   Second, we take note that the origin centroid configuration is obtained by premultiply

ing X by a well-known centering matrix (Horst, 1965) 

                        G=I-(1N 1N'/N). (17)



The matrix G has the following properties : 

                        G'=G, G'= G, G 1N=0, (18) 

and is an orthogonal projection matrix. Here, 1N is an N-dimensional vector whose 

components all equal unity. 

   Then, by a double centering transformation of the matrix S , Eq. (16) can be rewritten 
as 

   S,=GSG' 
      = aXX Xc' + bXcIp* X,'+ cGJN G'+ G E G' , (19) 

where the matrix Xc is the origin centroid configuration. For the original full similarity 
data matrix, the third right-hand term of Eq. (19) is zero. since 

                           G JN G'= O. (20) 

Here 0 is a matrix whose entities are all 0. 

   It is interesting to note that the Young-Householder transformation is written as 

    Pc=Xc XX'=G P G'=-G T G'/2, 
       _ {-(d;k2 d; .2 d.k2+ d..2)/2}, (21) 

and that 

                       G S G'={S;k-S,.-S.k+S..}, (22) 

where matrices P and T are an inner product matrix and a squared distance matrix, 

respectively. 
   It is clear from Eqs. (19) and (21) that double centering transformation of the similarity 

data matrix S leads to the following equation : 

          Sc=-aG T G'/2+bXc Ip* Xc'+c G JN G'+G E G'. (23) 

Eq. (23) describes the relation between similarity and distance in GIPSCAL. To be precise, 
it states that the doubly centered similarity is a linear combination of the squared distance 
between two vectors and the area of the parallelogram spanned by the two vectors except 

for constant and error terms in GIPSCAL. 
   To this point we have assumed the full similarity data matrix. However, in many 

cases we face data matrices with missing observations. In such cases, GIPSCAL provides 
near origin centroid configuration under the double centering transformation. This will be 

explained in the following section. 
   Some readers may doubt whether the double centering transformation of the original 

similarity matrix is appropriate. In fact, this transformation sometimes provides a better 
fit to the GIPSCAL model, but sometimes also a worse fit. Apparently, the results depend 

on the data. 
   Aside from the discussion of goodness of fit, there is no logical reason why we must 

choose the origin centroid configuration or near origin centroid one in the case of the inner 

product model. Thus, in the recent version of the GIPSCAL programme, this transforma
tion is only one of the options in the preprocessing of original data.



5. The algorithm 

   Suppose that we are given NT elements, of the Sjk. 

Let

ejk = 1, if Sjk is given 

    0, if Sjk is not given

(24)

Then N N (25)                           NT=Z Z e
jk 

                                                                     j=1k=1 

   A reasonable procedure would seem to be to minimize the following function Q in a 

least square sense : 

                     N N 

               Q=3~1 Z ejk (Sjk-axj' Xk-b xj' Ip* Xk-C)'. (26) 
                                j=1 k=1 

   For attacking this problem, we have chosen a familiar alternating least squares 

method, which is the same algorithm taken as that in Chino's ASYMSCAL. 

   To minimize Q, we first take the derivative of Q of Eq. (26) with respect to xh, where 

h $ j, k. Then, using the matrix A defined already in Eq. (13), we have 

N 

                  aQ/axh=-2{Z ejh (Sjh-xj' A Xh-c) A' xj 
                                                    j=1 

N 

                   + Z ehk (Shk-xh' A Xk-C) A Xk}. (27) 
                                  k=1 

Switching notation of the second right-hand term of Eq. (27) from k to j for later 

convenience, we have 

N 

                  aQ/axh -2{Z ejh (Sjh-xj' A Xh-c) A'x; 
                                                     j=1 

N 

                   + E ehj (Shj-xh'A xj-c) Axj}. (28) 
                                      j=1 

Rearranging the right member of Eq. (28), we get 

        aQ/axh=-2Z C{(ejh Sjh A' +ehj Shj A)-c (ejh A'+ehj A)} xj 
                                   j=1 

                -(ejh A' xj xj' A+ehj Axj xj'A') Xh,. (29) 
Then, setting aQ/axh equal to zero, and rearranging, we find 

N 

             (A' Yh A+A Zh A') Xh= > {(ejh Sjh A'+ehj Shj A) 
                                                                  j=1 

                       -c (ejh A'+ehj A)} x3, (30) 

where 

                     Yh=X'Bh X, Zh=X'Dh X, (31) 

and 

                  Bh=diag (eih), Dh=diag (eht). (32) 

Finally we have



                        Xh= Ch-1 (A'uh+A Vh), (33) 

where 

                       Ch= A'Yh A+A Zh A', (34) 

N 

                        uh= E ejh (Sjh-c) xj, (35) 
                                                  j=1 

N 

                        Vh= Z ehj (Sh; c) xj. (36) 
                                                  j=1 

The form (33) suggests the iterative solution 

                         Xh, t+1=Ch,t 1 (At' uh,t+At Vh,t). (37) 

The value xj,t obtained at trial t is used to obtain the next xh,t+1. 
   At each trial t, the configuration is normalized by scaling each vector xj so that the 

maximum (Ixll, IX2I, ..., .xND) equals one. This is the same strategy as in Chino's ASYMS
CAL. 

   Secondly, taking the derivatives of Q of Eq. (26) with respect to c, we have 

                         N N 

           aQ/ac--2 Z Z ejk (Sjk axj' xk-bxj' Ip* Xk-C). (38) 
                                        j=1 k=1 

Then, setting aQ/ac equal to zero, and solving for c, we find 

                         c=9-aP-b 0, (39) 

where 

                                 N N 

                     S= Z Z ejk Sjk/NT, (40) 
                                                    j=1 k=1 

                                N N 

                      P= Z E ejk xj' xk/NT, (41) 
                                               j=1 j=1 

and 

                              N N 

                     0= E E ejk xj' Ip* xk/NT. (42) 
                                               j=1 k=1 

Next, substituting for c in Eq. (26), we have 

                                   N N 
J _ _                       Q= E E ejk {(Sjk-S)-a (xj'xk-P) 

                                             j-1 k=1 

                         -b (xj' Ip* xk O)}2. (43) 

Taking the derivatives of Q with respect to a and b respectively, we have 

                  aQ/aa = 2 NT (a 6p2 + b apo2  6sp ), (44) 

and 

                   aQ/ab = 2 NT (a 6po  b6o2  6so ), (45) 

where 
                         N N 

               asp= E E ejk (Sjk-S) (xj'xk-P)/NT, (46) 
                                       j=1 k=1 

                      N N 

              aso= E E ejk (Sjk-S) (xj' Ip* xk 0)/NT, (47) 
                                    =1 k=1



             apo= Z Z ejk(xj' xk-P) (xj' Ip* xk O)/NT, (48) 
                                 j=1 k=1 

                   ape= Z Z ejk (xj'xk-P)2/NT, (49) 
                                              j=1 k=1 

               6o'=Z Z ejk (xj' Ip* xk-O)2/NT. (50) 
                                          j=1 k=1 

Then, setting aQ/ab and aQ/ab equal to zero respectively, we find 

                     a=(asp 602-6so 6po)/ (6p2 602-6po2), (51) 
    b = (6so 6p2-asp 6po )/ (6p2 a02-6P02). (52) 

   We shall now discuss the problem of preprocessing the original similarity data. 

GIPSCAL has two options concerning this problem. One is the simple normalization of 
the original data, in which case Sjk's ar'e normalized in such a way that their mean and the 

standard deviation equal zero and one, respectively. The other is the double centering 
transformation. As pointed out in the previous section, in this case, the quantity c 
becomes zero if and only if the original data have no missing observations. Otherwise c 

is not equal to zero. For the right-hand term of Eq. (42) will not equal zero if we have 
asymmetric missing observations (i.e., either ejk or ekj is zero). 

   Next, we shall discuss the measure of goodness of fit. The total variance of Sjk, that 
is, as' would be partitioned into two parts, with the aid of Eqs. (43), (51), (52). Thus, we 

have 

               as2=as2 (rsp2+rso-2rsp rso rpo)/(1-rpo2)+6e2, (53) 
or 

              1= ( rsp2 + r. 02  2rsp rso rpo )/ (1 rpo2) + (ae/6s )2, (54) 

where 

                       rsp = lisp/ (as lip), (55) 

                             rso = 6so/ (as 'go), (56) 
                           rpo = 6po/ (up 60 ), (57) 

and 

                            6e2=Qmin/NT. (58) 

   We can define the first right-hand term of Eq. (54) as the indicator of goodness of fit 
to the model. Thus, it is defined to be 

                   F = (rsp2 +rso2  2rsp rso rpo )/ (1-rpo2 ). (59) 

For the full similarity data matrix, we have 

                                F= rsp2+ rso2, (60) 

which coincides with the indicator as in Chino's ASYMSCAL. 
   Finally, we shall consider the problem of convergence. It is desirable to obtain the 

second-order derivative Hessian matrix in order to help evaluate whether an extremum of 
the function Q has been found and to implement the more efficient Newton-Raphson 

method.



   Remembering Eq. (34), we obtain 

                    a/axh (aQ/axh)=2Ch. (61) 

From the definition of Bh and Dh, it is clear that Bh2 = Bh and Dh2 = Dh. 
Hence 

                  Yh=X'Bh X=(Bh X)' (Bh X), (62) 

and 

                  Zh=X'Dh X=(Dh X)' (Dh X). (63) 

Rewriting the Hessian matrix Ch by using Eqs. (62) and (63), we have 

           Ch=A' Yh A+A Zh A', (64) 
            =(Bh X A)' (Bh X A)+ (Dh X A')' (Dh X A') , 

               = Ph' Ph + Qh' Qh, 

where 

                   Ph=Bh X A and Qh=Dh X A'. (65) 

It is not difficult to verify that the Hessian Ch given by Eq.. (64) is non-negative definite. 
   Moreover, it is apparent from Eqs. (64) and (65) that the Hessian is positive definite if 

all the ranks of the matrices Bh, Dh, X, and A are p. 

   Considering the case in which the Hessian is not positive definite, we recommend 
starting the iterative process of GIPSCAL from a variety of different initial configurations.

Fig. 6.1 Derived configuration for errorless data

6. Examples of application 

   We shall now show some examples of application. First, we will apply GIPSCAL to 

a set of errorless data which was shown as an illustration in Chino (1978). We add



diagonal elements to the data to make a full similarity data matrix. In this case both 

options of preprocessing, that is, the simple normalization and the double centering, 

recovered the assumed configuration of the data almost perfectly in two dimensions except 

for a rotation and/or a translation (origin shift). However, these options differed slightly 

in the coefficients rsp and rso. In the case of the simple normalization, rsp and rso were 

.720 and .693, respectively. In the case of the double centering, these were .715 and .698. 

As expected, the constant term c in GIPSCAL was almost zero in the case of the double 

centering, while it was not zero in the case of the simple normalization. Fig. 6. 1 shows the 

derived configuration for the double centering.

Fig. 6.2 The one-two plane for the journal citation data

   Second, we will show the results of application to journal citation data, especially the 

data shown in Table 2 in Chino (1978). Fig. 4 in that paper, of course, shows the derived 

configuration by Chino's ASYMSCAL for simply normalized data. The data were treated 

as similarity data. Values of F for doubly centered data were .835, .946, and .965 in two,



three, and four dimensions, respectively.

Fig. 6.3 The one-three plane for the journal citation data

   We have chosen the three-dimensional configuration because the principal axis rota

tion of the four-dimensional configuration indicates that the latter configuration is almost 

degenerated. In other words, variation in the fourth dimension was very poor. Figs. 6.2 

through 6.4 shows the planes defined by dimensions one and two, one and three, and two and 

three, respectively. We have not interpreted these principal axes because the number of 

journals is too small to assign them appropriate labels. In this case, rsp and rso were 
- .907 and -.350, respectively. As discussed in the introduction section, the sign of the 

constant b in our model, which is the same as that of rso, determines the direction of 

asymmetry in each plane. Since the sign is negative, the positive directions in the planes 

defined by the above three are clockwise, counterclockwise, and clockwise, respectively. 

These directions are shown in the planes. It should be noted that the sign of rsp is 

negative. This means that the shorter the distance between journals the less frequent the 

citation. For, we treated the data as similarity data. 

   The one-two plane explains the major symmetric relations contained in the original 

data. For example, locations of JAP, JEdP, and Pka indicate that citations between these



journals are very poor. The same is true for AJP and JCPP. On the other hand, JExP 
is almost on the line passing through the origin and is located on the opposite side of 

journals JAP, JEdP, and Pka. This means that citations between JExP and each of these 
three journals are very frequent. Relation is the same between JCP and each of AJP and 

JCPP as well as between JASP and each of journals AJP and JCPP.

Fig. 6.4 The two-three plane for the journal citation data

   This plane also indicates the major asymmetric relations included in the data. For 

example, the positive direction in this plane describes the citation surpluses from JExP to 

JASP. The similar relations hold from JASP to JCP, from JCP to Pka, and so on. The 

only major asymmetry which contradicts the data is the relation between JCPP and JExP. 

This plane describes the citation surplus from JCPP to JExP, but it is not true. 

   The one-three plane draws the true citation surplus from JExP to JCPP. This can be 

readily confirmed if we notice that the positive direction in this plane is counterclockwise. 

This plane also emphasizes relatively poor citations between JASP, JAP, JCP, JEdP, and 

Pka and relatively frequent citations between JExP and each of the five journals. 

   The two-three plane might depict the major symmetric relations and minor asym

metric relations included in the data. For example, the positive direction in this plane 

(i.e., clockwise) indicates the citation excesses from JCPP to each of JAP, JEdP, and Pka 

as well as from each of these three journals to AJP. 

   Finally, we will show the results of application to word association data gathered by



Nakagawa (1986). Table 6.1 shows this. The subject was asked to rate the magnitude of 

association by a seven point rating scale. Thus, the scores range from 1 to 7 for the 

weakest association and the strongest association, respectively. We analyzed the data as 

similarity data. Since the goodness of fit was poor in lower dimensions, we obtained 

solutions up to six dimensions. Values of F for doubly centered data were .461, .573, .672, 

.759, and .779, in two, three, four, five and six dimensions, respectively. Considering the 

deceleration of the improvement of the goodness of fit as well as ease of interpretation, we 

tentatively adopted the five-dimensional configuration. The principal axis solution has 

indicated that this configuration is not degenerated. Figs. 6.5 through 6.8 show the planes 

defined by dimensions one and two, one and three, one and four, and one and five, respec

tively. Although combinations of the five dimensions yield 10 planes, we selected the 

above four planes for simplicity as well as for space limitations. In this case, rsp and rso 

were .864 and -.116, respectively.

                  Table 6.1 

Word association data gathered by Nakagawa (1986)

   The first dimension might be labelled natural-social because the first four (i.e., fish, 

plant, tree, nest) are related to natural resources and the last four (i.e., class, labor, fight, 
and knight) to social resources or events. The second dimension has an even less obvious 

interpretation : the first three (that is, iron, labor, and mother) are associated with stable 

impressions and the last three (i.e., fight, honor, and knight) with unstable impressions. In 

the same manner, we labelled the third, fourth, and fifth dimensions release-discrimination, 

soft-hard, and neutral-judge, respectively. Each plane defined by the combination of these



dimensions describes various aspects of symmetric and asymmetric relations contained in 

the data. The positive directions in the above four planes are, respectively, counterclock

wise, clockwise, counterclowkwise, and clockwise, since the sign of rso is positive.

Fig. 6.5 The one-two plane for the word association data

   The one-two plane describes relatively symmetric associations between words within 

subgroups. For example, honor, knight, and fight form a subgroup. Plant and tree 

constitute another subgroup. In contrast with the distance model, the words located on the 

line passing through the origin indicate that they also have symmetric relations. Thus, 

jack and iron, for example, constitute a third subgroup. This plane also draws some 
aspects of asymmetric relation. The major ones are association imbalances between 

yacht and labor as well as knight and iron. The positive direction in this plane indicates, 
for example, that although the intensity of association with yacht from labor is strong, the 

reverse is relatively weak. 

   There are several major symmetric and asymmetric relations depicted in this plane 

which contradict the data. For example, intensity of association between class and labor 

is the same in the original data, but this plane draws a relatively large imbalance of 

association since the area of the parallelogram spanned by location vectors of these two 

words in relatively big. Another contradiction is the asymmetric relation between plant 

and iron. According to the original data, the intensity of association with plant from iron 

is stronger than that with iron from plant. However, the positive direction suggests the



reverse relation. In a similar manner, the relation indicated in this plane between words 

scale and labor contradicts the original data.

Fig. 6.6 The one-three plane for the word association data

   The one-three plane explains some of the relations which the one-two plane fails to 

describe. One is the symmetric relation between class and labor. Another is the asym

metric relation between relief and hope. This plane might mainly draw the asymmetric 

relation in the direction of the third dimension, that is, release-discrimination. The major 

three association imbalances in this direction are depicted between the pairs : class and 

knight, iron and knight, and hope and relief. 

   The one-four plane describes a major asymmetric relation between plant and iron, 

which neither the one-two plane nor the one-three plane can describe. That is, the 

positive direction in this plane describes the following relation : the intensity of association 
with plant from iron is strong, while the reverse weak. 

   The one-five plane describes major symmetric relations and minor asymmetric rela

tions contained in the original data. As for symmetric relations, these include associations 

between words within subgroups : group 1 (fish and plant), group 2 (nest and tree), group 3 

(class, fight, and labor), group 4 (scale and number). As for asymmetric associations, this 

plane describes many of the minor association imbalances between pairs nest and fight, tree 

and iron, label and tree, label and fish, umpire and number, honor and relief. The positive 

direction in this plane, which is clockwise, all coincides with the directions of association



imbalances between these pairs included in the original data.

Fig. 6.7 The one-four plane for the word association data

7. Discussion 

   In this paper we have introduced an extension of Chino's ASYMSCAL into higher 

dimensions and discussed theoretical and practical implications of the extension. GIPS

CAL, which is the extended model, fits the inner product and the area of the parallelogram 

spanned by two vectors to the symmetric and skew-symmetric parts of original or 

preprocessed similarity judgements, respectively. The square of the area of the parallelo

gram is nothing other than the Gramian of these two vectors. 
   GIPSCAL not only permits parsimonious geometrical representations of both the 

asymmetric structure and symmetric structure of data but also permits a social psychologi

cal justification as to why asymmetry arises. 

   Although inner product models are not in the mainstream of MDS, we have shown that 

our generalized inner product model-GIPSCAL can be related to a distance model indirect

ly, if we assume a double centering transformation as a preprocessing of original similarity 

data. Here it should be noted that the famous Young-Housholder transformation, which



plays a fundamental role in MDS techniques, is obtained through the double centering 
transformation of the inner product matrix produced from the configuration of objects 

whose origin is arbitrary.

Fig. 6.8 The one-five plane for the word association data

   One short-coming of GIPSCAL is its employment of a metric MDS. Considering the 

nature of data in social and behavioral sciences, it will be better to develop a nonmetric 

asymmetric MDS as Okada and Imaizumi (1987) have done. 

   Another short-coming is that GIPSCAL is merely a representation model, as are most 

of the extant MDS techniques. In the near future some researchers may develop response 

models which can take specific response processes in which asymmetry arises. However, 

since the context in which asymmetry arises seems to be diverse in character, we believe 

that there will be some important roles which representation models play. For example, 

if we face a set of longitudinal relational data matrices and consider the derived 

configuration obtained at each time by an appropriate extant MDS as a snapshot of a group 

formation process, it seems to be better to construct a group dynamics model which 

accounts for changes in group structure over time rather than to construct a specific 

response model which accounts for the cause of asymmetry at each time. In such a case, 

representation models may catch the structure at each time naturally without preoccupa

tion with the specific response process assumed.



   One other short-fall is that GIPSCAL as well as all the extant asymmetric MDS's does 

not utilize information about judgmental errors. To utilize such information, the max

imum likelihood principle should be applied, as has been done in symmetric MDS (Ramsay, 

1977, 1982 ; Takane, 1978a, 1978b, 1981 ; Takane and Carroll, 1981). This also enables us 

to compute AIC (Akaike, 1974), and therefore enables us to compare extant asymmetric 

MDS's and thereby to choose the best model.
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